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ABSTRACT 

The effect of an arbitrary change of frame on the structure of turbulence 

models is examined from a fundamental theoretical standpoint. It is proven, 

as a rigorous consequence of the Navier-Stokes equations, that turbulence 

models must be form invariant under arbitrary translational accelerations of 

the reference frame and should only be affected by rotations through the in- 

trinsic mean vorticity. A direct application of this invariance property 

along with the Taylor-Proudman Theorem, material frame-indifference in the 

limit of two-dimensional turbulence and Rapid Distortion Theory is shown to 

yield powerful constraints on the allowable form of turbulence models. Most 

of the commonly used turbulence models are demonstrated to be in serious vio- 

lation of these constraints and consequently are inconsistent with the Navier- 

Stokes equations in non-inertial frames. Alternative models with improved 

non-inertial properties are developed and some simple applications to rotating 

turbulent flows are considered. 
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1. INTRODUCTION 

Turbulence plays a fundamental role in a variety of physical systems 

which evolve in non-inertial frames of reference. Various types of fluid 

machinery and geophysical systems (e.g., gas turbines, propellers, ocean cur- 

rents, and atmospheric weather fronts which can have a profound effect on our 

daily lives) generate turbulence in non-inertial reference frames that are 

undergoing time-dependent rotations and translations relative to an inertial 

framing. Consequently, it is essential that a clear understanding of such 

non-inertial effects on turbulence be gained if these physical systems are to 

be modeled properly. Furthermore, due to the analogy between rotations and 

curvature, a physical model which does not properly account for non-inertial 

effects is likely to yield erroneous predictions for problems involving curva- 

ture in inertial frames of reference. 

To date, there have been no comprehensive studies of non-inertial effects 

on turbulence modeling based on a rigorous analysis of the Navier-Stokes equa- 

tions. Most of the previous studies consisted of rigorous mathematical 

analyses of the highly simplified limiting case of two-dimensional turbulence 

(see Speziale 1981, 1983) or more applied studies of three-dimensional turbu- 

lence where the effects of rotations of the reference frame were accounted f o r  

by a variety of ad hoc empiricisms (c.f., Majumdar, Pratap, and Spalding 1977, 

Howard, Patankar, Bordynuik 1980, and Galmes and Lakshminarayana 1983). There 

have been several studies applying second-order closure models to turbulent 

flows in rotating frames which are substantially less empirical in nature 

(c.f., Mellor and Yamada 1974, So 1975, So and Peskin 1980, and Launder, 

Tselepidakis, and Younis 1987). However, it was recently proven by Speziale 

(1985) that these particular second-order closure models are fundamentally 
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inconsistent with the Navier-Stokes equations in a rapidly rotating frame. 

Consequently, such models cannot be applied to turbulent flows in arbitrary 

non-inertial frames of reference without the need for making ad hoc adjust- 

ments in the constants. Since direct numerical simulations of such turbulent 

flows, at the high Reynolds numbers and in the complex geometries of scien- 

tific and engineering interest, will not be possible for at least the next 

several decades, it is essential that turbulence models be developed whose 

properties in non-inertial frames of reference are consistent with the Navier 

Stokes equations. This forms the raison d'etre of the present study. 

In this paper, it will be proven that turbulence models should be form 

invariant under arbitrary translational accelerations of the reference frame 

relative to an inertial framing (i.e., the exact invariance group of turbu- 

lence models is the extended Galilean group). Rotations 'of the reference 

frame will be shown to affect turbulence models only through the intrinsic 

mean vorticity. It will be shown that these rotationally-dependent non- 

inertial effects must vanish €or a two-dimensional turbulence (i.e., material 

frame-indifference in the limit of two-dimensional turbulence; see Speziale 

1981, 1983) and should be consistent with Rapid Distortion Theory and the 

Taylor-Proudman Theorem (c.f., Greenspan 1968). A systematic application of 

these ideas will be shown to provide powerful constraints on the allowable 

form of turbulence models. A variety of the popularly used turbulence models 

(e.g., zero, one, or two equation turbulence models along with second-order 

closures) will be shown to be in serious violation of these constraints which 

can give rise to spurious physical results in rotating frames. Improved two- 

equation models and second-order closure models will be presented along with 

some brief applications to rotating turbulent flows. 
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2. CONSTRAINTS ON TURBULENCE MODELS I N  NON-INERTIAL REFERENCE FRAMES 

We will consider the incompressible turbulent flow of a homogeneous 

viscous fluid governed by the Navier-Stokes and continuity equations which 

take the form (c.f., Batchelor 1967) 

(1 1 2 - a v + v . v v = - v P + v v v - 1 2 x x - D x  (Qxx) - f i o - 2 D x v  
at 

in an arbitrary non-inertial reference frame (see Figure 1 ) .  In Equations 

(1)-(2), v is the velocity vector, P is the modified pressure, D ( t )  is the 

rotation rate of the non-inertial frame relative to an inertial framing, 

fia(t) is the translational acceleration of the origin of the non-inertial 

frame relative to an inertial framing, and v is the kinematic viscosity of 

the fluid. It should be noted that the Navier-Stokes equations are altered by 

the presence of four f rame-dependent terms on the right-hand-side of (1 ) 

which, respectively, are referred to as the Eulerian, centrifugal, transla- 

tional, and Coriolis accelerations. The continuity equation is frame- 

indifferent, i.e., it has no non-inertial terms and, hence,is of the same form 

in all frames of reference independent of whether or not they are inertial. 

As in the usual treatments of turbulence, the velocity field v and 

pressure P will be decomposed into ensemble mean and fluctuating parts as 

follows : 
- - 

v = v + u ,  P = P + p  

where 
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are ensemble averages taken, in practice, over a large number of N realiza- 

tions of the turbulence (c.f., Hinze 1975). For a statistically steady or 

homogeneous turbulence, the ergodic hypothesis can be invoked and time 

averages or spatial averages, respectively, can be substituted. The mean 

velocity v and mean pressure P are solutions of the Reynolds equation 

and mean continuity equation which, respectively, take the form 

- - 

(5 1 - a ~ + T * v ~ = - v Y + v v 2 T + V * T - h x x - n x  ( Q x x ) - 6  - 2 n x v  
at 0 

v * v = o  

in any arbitrary non-inertial reference frame where 

- 
‘t = -Uu 

is the Reynolds stress tensor. Equations ( 5 ) - ( 6 )  are obtained by substituting 

the decomposition ( 3 )  into the Navier-Stokes equations and then taking an en- 

semble average. The fluctuating velocity u and fluctuating pressure p are 

solutions of the following equations (valid in an arbitrary non-inertial 

frame) : 

(8 1 2 - a U + ~ * V u = - a * V u - a * V ~ - V p + ~ V u - V * ~ - 2 Q x u  
at 

which are referred to as the fluctuating momentum and fluctuating continuity 

equation, respectively. Equations (8)-(9) are obtained by subtracting 
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Equations (5)-(6) from Equations (1)-(2), respectively. From Equation (8), it 

is clear that the evolution of the fluctuating velocity u (for a given mean 

velocity field) is only affected by the reference frame through the Coriolis 

acceleration 2p x U. Eulerian, centrifugal, and translational accelera- 

tions only have an indirect effect on the fluctuating velocity through the 

changes that they induce in the mean velocity. 

At this point, the concepts of the Oldroyd derivative and intrinsic 

vorticity will be introduced. The Oldroyd derivative of the fluctuating 

velocity is defined by 
- - - + + . v u - a - v ~  Dcu - au - 
Dt - at 

I 
and represents the frame-indifferent convected time rate of u following the 

mean velocity with respect to both position and orientation. Unlike the sub- 

stantial derivative Du/Dt z au/at + V - Vu, the Oldyroyd derivative is 

independent of the observer; relative to any two independent non-inertial 

reference frames x and x (whose motions can differ by an arbitrary time- * 

dependent rotation and translation) the Oldroyd derivative of a given fluctu- 

ating velocity field is the same, i.e., 

* 
Dcu Dcu 
Dt Dt 

(11) - =  * - *  

The intrinsic vorticity W (also referred to as the absolute or potential 

vorticity) is the vorticity relative to an inertial framing and is obtained by 

adding 2Q to the local vorticity w 2 V x v in the non-inertial 

frame. Hence, we have (c.f., Tritton 1977) 
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W = w + 2 Q .  

By taking the ensemble mean and dual of (12), the intrinsic mean vorticity 

vector and tensor are obtained which, respectively, are given in component 

form by the equations 
- - 
Wk = 0 + 2ilk k 

- - 
+ E  n 'kR = WkR mRk m 

- 1 -  where wu (av /ax - avR/axk) is the local mean vorticity tensor and k R  
is the permutation tensor. A straightforward substitution of (10) and 

(14) into (8 )  gives rise to the alternative form of the fluctuating momentum 
mRk E 

equation 

(15) - =  DCu - u * V u - 2 ( ~ + ~ * u - V p + v V u - V * r  2 
Dt 

which is valid in any non-inertial frame of reference. In (15), V is the 

intrinsic mean vorticity tensor and S is the mean rate of strain tensor 

whose components are given by 

- 

in all frames of reference independent of whether or not they are inertial. 

A s  a result of (15), it is clear that the evolution of the fluctuating 

velocity (and higher-order moments constructed from it) only depend on the 

reference frame through the intrinsic mean vorticity W. 
- 



-7- 

The Reynolds and continuity equations (5) - (6)  are not closed as a result 

of the additional unknowns represented by the six components of the Reynolds 

In virtually all previous studies of turbulence model- stress tensor 

ing beginning with Boussinesq, it was tacitly assumed that the Reynolds stress 

tensor is uniquely determined by the global history of the mean velocity 

field. This assumption is generally consistent with the Navier-Stokes equa- 

tions in an inertial framing as pointed out by Lumley (1970). Hence, in an 

inertial frame of reference, we have 

‘kR’ 

f = T[:(x’,t’); x,t] x’E D, t’E (-..,t) (17 )  

where D is the fluid domain and a bracket [a] denotes a functional (i.e., 

any quantity determined by the global history of a function). It should be 

noted at this point that both T and v are kinematical quantities whose 

transformation properties under a change of frame are mathematically deter- 

mined. To be more specific, given that x is an inertial frame and x is 

an arbitrary non-inertial frame, it is a simple matter to show from basic 

kinematics that (c.f., Speziale 1979) 

- 

* 

* 
T = T  

-* - 
v = v - Q x x -  uO 

Consequently, once the inertial form of (17)  is specified its non-inertial 

form is automatically determined. It thus follows that if the non-inertial 

form of (17)  is incorrect, its inertial form must also be incorrect since the 

two are not independent. 
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Since ‘II is uniquely determined from the fluctuating velocity (i.e., 
- 

T = - uu), it is clear that its invariance group must be at least as large as 

the invariance group of the fluctuating momentum equation (8) (of course, ( 1 7 )  

constitutes a special solution of (8 )  and, hence, it could have a larger in- 

variance group; c.f., Rosen 1980). consequently, turbulent closure models 

for T must be at least form invariant under arbitrary translational ac- 

celerations of the reference frame. Hence, Equation ( 1 7 )  must transform in 

the form invariant manner 

~[-ii)t(x’,t’); x,t] = r[T(x’,t’); x,t], x’ ED, t’ E(-m,t) ( 2 0  1 

under the extended Galilean group of transformations 

* x = x + c(t) 

.. 
where Uo -c is the translational acceleration of the non-inertial frame 

relative to an inertial framing. Constraint (20) would, for example, forbid 

turbulent closure models from having any explicit dependence on the mean 

acceleration s/Dt. Since any dependence on the rotation rate of the 

reference frame must arise from the intrinsic mean vorticity, it follows that 

in an arbitrary non-inertial frame, turbulent closure models for 

of the general form 

T = T[;(X’,t’), w(x’,t’); x,t] x’E D, t’ E (-a,t). 

Here it is understood that the explicit functional dependence on 

T 

- 
V 

must be 

( 2 2 )  

in (22 )  
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is frame-indifferent (i.e., does not contain any terms which depend on the 

motion of the reference frame relative to an inertial framing). Frame- 

dependence only enters implicitly through the intrinsic mean vorticity W. 

Examples of one-point fields that are frame-indifferent functionals of the 

mean velocity include S and DcS/Dt; two-point fields that are frame- 

indifferent include the vorticity difference Z(x’,t) - 3(x,t) and its 

Oldroyd derivative. 

- 

- 

Although three-dimensional turbulent closure models can be frame- 

dependent through the intrinsic mean vorticity tensor W, it has been shown 

recently that such models must become frame-indifferent in the limit of two- 

dimensional turbulence (see Speziale 1981, 1983). By a two-dimensional turbu- 

lence we mean a turbulent flow where the fluctuating velocity u is of the 

plane two-dimensional form 

- 

Consistent with this two-dimensional assumption, the angular velocity of the 

reference frame must be of the form Q = S2k so that the mean velocity in- 

duced by it is comparably two-dimensional. For such a flow, the Coriolis 

acceleration in the fluctuating momentum Equation (8) is derivable from a 

scalar potential as follows (see Speziale 1981, 1983) 

since, as a general solution of the two-dimensional continuity equation, the 

fluctuating velocity can be written in the stream function form 
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Consequently, the Coriolis acceleration (which constitutes the only non- 

inertial effect in Equation (8)) can be absorbed into the fluctuating pressure 

in a two-dimensional turbulence leaving the fluctuating velocity unaffected. 

Consistent with this result, the dependence of the Reynolds stress tensor on 

the intrinsic mean vorticity (which characterizes these Coriolis effects) must 

vanish in the limit of two-dimensional turbulence rendering the model frame- 

indifferent. Thus, in the two-dimensional limit, turbulence closure models 

for the Reynolds stress tensor must be of the same form 

independent of whether or not the reference frame is inertial. This invari- 

ance property is referred to as the principle of material frame-indifference 

in the limit of two-dimensional turbulence (see Speziale 1981, 1983). 

The limit of two-dimensional turbulence constitutes a real physical limit 

which can be approached by any statistically steady turbulence, sufficiently 

far from solid boundaries, in a rapidly rotating framework (a direct conse- 

quence of the Taylor-Proudman Theorem; c.f ., Tritton 1977). The Taylor- 

Proudman Theorem in its classical form states that steady inviscid flows in a 

rapidly rotating framework are two-dimensional, i .e., are independent of the 

coordinate along the axis of rotation of the fluid. Of course, the Taylor- 

Proudman Theorem holds in an excellent approximate sense for most laminar vis- 

cous flows provided that the flow is sufficiently far removed from solid 

boundaries where Ekman layers can develop. For a statistically steady 
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turbulent flow in a rotating frame, the Reynolds equation takes the form 

- - 
v Vv = -VF + vV2i + V T - 2P x v 

where the centrifugal acceleration has been absorbed into the modified pres- 

sure P. The associated mean vorticity transport equation, obtained by 

taking the curl of Equation (27), is given by 

- 

- 
v V&; = V i  + vV2G + V x (V T) + 2P Vi 

- 
where o z V x is the local mean vorticity in the rotating frame. If we 

let Q = nk, Equation (28) can be written in the alternative form 

In the limit as Q + =, Equation (29) reduces to 

for a statistically steady turbulence. Sufficiently far from solid 

boundaries, Equation (30) has the simple solution 

and, thus, the mean velocity field for a statistically steady turbulence in a 

rapidly rotating frame must be two-dimensional. If the flow is confined by 
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boundaries normal to the axis of rotation (at distances sufficiently far re- 

moved from the flow region being considered), the mean velocity field will be 

of the two component form = 7 (x,y)i + 7 (x,y)j (see Tritton 1977). The 
X Y 

same type of two-dimensionalization will hold for the Reynolds stress tensor 

in an approximate sense since the filtered velocity satisfies an equation of 

the form of (28) and the larye scales of turbulence contain most of the 

energy. This is the turbulent generalization of the classical Taylor-Proudman 

Theorem which has been verified experimentally to hold in an excellent approx- 

imate sense provided that the Rossby number 

and vo are the length and velocity scales of the turbulent fluctuations). 

Any turbulence model which does not yield such a Taylor-Proudman reorganiza- 

tion in a rapidly rotating framework is fundamentally inconsistent with the 

non-inertial form of the Navier-Stokes equations. 

Ro E vo/61fi0 << 1 (where 

The last constraint that will be considered in this section involves the 

application of Rapid Distortion Theory (RDT) to turbulence suddenly subjected 

to a strong rotation. Since the Taylor-Proudman Theorem serves primarily as a 

constraint on the large energy containing eddies in a rapidly rotating frame, 

RDT will be used as a constraint on the small scale turbulence which is not 

too far removed from isotropy. Hence, RDT for an initially isotropic turbu- 

lence which is suddenly subjected to a rapid rotation will be considered. For 

this problem, the initial Reynolds stress tensor and dissipation rate tensor 

are of the isotropic form 
n 

Tij - - ' K 6 - 3 o i j  

2 , 6  Dij = 3 0 ij (33 )  
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is “0 respectively, where KO 1s the initial turbulent kinetic energy and 

the initial dissipation rate of the turbulence (it should be noted that 

1 
2 ii 8 = - D ). Rapid Distortion Theory D = 2 v(aui/axm)(au /axm> and 

predicts that the turbulence undergoes an isotropic linearly viscous decay 

(c.f., Reynolds 1987). More specifically, according to RDT, the Reynolds 

stress tensor and dissipation rate tensor are of the isotropic form 

ij j 

at a later time t > 0 after the turbulence has been subjected to the rapid 

rotation. Here, the turbulent kinetic energy and dissipation rate are deter- 

mined from the energy spectrum E(k,t) as follows (c.f., Hinze 1975 ) 

m 

K(t) = / E(k,t)dk 
0 

O D 2  
E(t) = 2v / 

0 
k E(k,t)dk 

(35 1 

which are valid for an isotropic turbulence. Rapid Distortion Theory predicts 

that the energy spectrum undergoes a linearly viscous decay, and thus at any 

later time t > 0: 
(37) E(k,t) = E(k,O)exp(-2vk 2 t) 

(it should be noted that in the limit of infinite Reynolds numbers, the energy 

spectrum remains unchanged for finite times t > 0; c.f., Reynolds 1987). Of 

course, RDT is only formally valid for short elapsed times 

However, since a rapid rotation destroys the phase coherence needed to cascade 

t << KO/cO. 
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energy from the large scales to the small scales (represented by the energy 

transfer term), it would appear that RDT could hold for much larger elapsed 

times for the case of a rapidly rotating isotropic turbulence. This was veri- 

fied by the results of direct numerical simulations of the Mavier-Stokes equa- 

tions for isotropic turbulence subjected to a rapid rotation (see Speziale, 

Mansour, and Rogallo 1987). These numerical simulations indicated that the 

rapid rotation suppresses the energy transfer for long time intervals yielding 

results in excellent approximate agreement with the RDT solution specified by 

Equations (34) and (37) for the primary period of the decay (i.e., up to and 

beyond the point where the turbulent kinetic energy has decayed to 10% of its 

initial value). The time evolution of the energy spectrum obtained from a 

1283 direct numerical simulation is shown in Figures 2(a)-(b) for a Reynolds 

number Re = 51 and a Rossby number Rox = 0.07 based on the initial 

turbulent kinetic energy and Taylor microscale. These computed energy spectra 

were illustrative of a linearly viscous decay during the entire period of the 

computation (i.e., for 0.1 < K/KO < 1.0). The L2 norm of the anisotropy 

tensor was extremely small (Ilbll < 0.01) for the entire duration of the 

computation and, hence, the rotation had no discernible effect on the isotropy 

of T. These results demonstrate strong agreement with RDT for large 

elapsed times. Numerical results for the decay of the turbulent kinetic 

energy (shown in Figure 3 )  illustrate that the rapid rotation gives rise to a 

dramatically reduced turbulence dissipation rate due to the disruption of the 

energy transfer from large scales to small scales. It is the opinion of the 

author that these fundamental results (which are important since they capture 

the essential physical features of the reaction of small scale turbulence to a 

rapid rotation for long as well as short elapsed times) should serve as a 

x 

2 
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basic constraint on turbulence models in rotating frames. Models that are in 

I serious violation of these RDT results are likely to give rise to spurious 

1 physical results in rotating turbulent flows. 
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3. INCONSISTENCY OF EXISTING TURBULENCE MODELS 

A s  demonstrated in the previous section, the Navier-Stokes equations in a 

non-inertial reference frame place the following basic constraints on the 

allowable form of turbulence models: 

(i) Reynolds stress models must be form invariant under arbitrary trans- 

lational accelerations of the reference frame and should only be affected 

by rotations of the reference frame through the intrinsic mean vorticity. 

(ii) All frame-dependent effects (and thus any dependence on the in- 

trinsic mean vorticity) must vanish in the limit of two-dimensional 

turbulence -- a constraint appropriately named material frame-indifference 

in the limit of two-dimensional turbulence. 

(iii) Reynolds stress models must be consistent with the Taylor-Proudman 

Theorem for turbulent flows. This requires that a statistically steady 

turbulence in a rapidly rotating frame (sufficiently far from solid 

boundaries) be two-dimensional. 

(iv) Turbulence models should be consistent with the results of RDT for 

an initially isotropic turbulence subjected to a rapid rotation. This re- 

quires Reynolds stress models t o  predict that an initially isotropic 

turbulence undergoes an isotropic linearly viscous decay in a rapidly 

rotating frame yielding a substantially reduced dissipation rate. 
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First, we will note the inconsistency of the more empirical Coriolis 

modified turbulence models with these constraints. These more empirical 

models are characterized by the introduction of coefficients that depend ex- 

plicitly on the rotation rate of the reference frame. For example, in the 

model of Howard, Patankar, and Rordynuik (1980), empirical coefficients in the 

transport equations for the turbulent kinetic energy and dissipation rate in 

rotating duct flow were allowed to depend on the Richardson number 

- 
where 51 is the rotation rate of the duct,. u is the mean velocity along 

the axis of the duct, and y is the transverse coordinate. A comparable em- 

pirical model, based on the nonlinear algebraic model of Rodi (1976), was pro- 

posed recently by Galmes and Lakshminarayana (1983) where an implicit depen- 

dence on the Richardson number (given by Equation (38)) was introduced into 

the Reynolds stresses. Such empirical models (which have also been proposed 

by other authors) violate constraint (i) and are thus inconsistent with the 

Navier-Stokes equations. More specifically, rather than an explicit depen- 

dence on the rotation rate SI there should be an implicit dependence on Q 

only through the intrinsic mean vorticity (i.e., the quantity -aG/ay + 2Q 

for the rotating channel flow under discussion). The recent large-eddy simu- 

lations of Bardina, Ferziger, and Reynolds (1983) for rotating homogeneous 

shear flow demonstrated that the turbulent Reynolds stresses do not scale with 

the Richardson number. 

-- 

Eddy viscosity models form the foundation for most of the turbulence 

models that are used by scientists and engineers. These models are of the 
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general form 

where 
D'kll = 2vT'kL 

D'kll = 'kll - 7 mm 6 kll 

(39 1 

(40 1 

is the deviatoric part of the Reynolds stress tensor and is the eddy 

viscosity in its kinematic form. Equation (39) encompasses a wide variety of 

turbulence models which, by far, are the most commonly used models for the 

solution of practical problems. We will now examine the consistency of a 

variety of popular eddy viscosity models with constraints (i)-(iv) for ro- 

tating turbulent flows. The simplest eddy viscosity models are the zero equa- 

tion models where the turbulent time scale is constructed from the mean velo- 

city gradients and the turbulent length scale is specified algebraically. Two 

such popular models are the Smagorinsky (1963) Model given by 

vT 

= l12(2S s ) 1 /2 
VT mn mn 

and the Baldwin-Lomax Model (or vorticity model) given by 

2 - -  1 /2 v = l l ( w w )  m m  T 

where ll is the turbulent length scale which is usually specified empiri- 

cally. The Smagorinsky Model, which is the tensorial generalization of 
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* Prandtl’s mixing length theory , arose out of the Geophysical Fluid Dynamics 
community and (as a subgrid scale model) has served as the cornerstone for 

large-eddy simulations. Since vT only depends on S, it is frame- 

indifferent for - all mean flows and, as such, automatically satisfies con- 

straints (ii)-(iii). However, since it is frame-indifferent in three- 

dimensions as well as in two-dimensions, the Smagorinsky Model is fundamental- 

ly incapable of describing the effects of rotation in retarding the energy 

transfer process (as described in constraint (iv)) which ultimately has an 

effect on D ~ .  However, such effects are primarily manifested in the large 

scales and, consequently, the Smagorinsky model would be satisfactory as a 

subgrid-scale stress model despite the fact that it has undesirable rotational 

properties as a Reynolds stress model (see Bardina, Ferziger, and Reynolds 

1983 and Speziale 1985). 

- 

On the other hand, it will now be shown that the Baldwin-Lomax Model is 

more seriously inconsistent with the Navier-Stokes equations in a rotating 

frame. It should first be noted that the eddy viscosity (42) is specified for 

an inertial framing. However, as alluded to earlier, it follows from basic 

kinematics that (see Speziale 1 9 7 9 )  

* 
T = T, ( 4 3  1 

where the starred quantities are relative to an arbitrary non-inertial 

reference frame x*. Hence, given that (42) is the inertial form of the 

Baldwin-Lomax Model, it follows that its non-inertial form is given by 

- *For a unidirectional turbulent shear flow (with mean velocity 
eauation ( 4 1 )  reduces to 

v = U(y)i) 
VT = !L21du/dYl 
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While this model is consistent with constraint (i) (i.e., frame-dependent 

effects only enter in through the intrinsic mean vorticity), it is in serious 

violation of constraints (ii)-(iv). To be more specific, in the limit of two- 

dimensional turbulence, WmWm= (w + 2QI2 survives and hence there is a viola- 

tion of material frame-indifference in the limit of two-dimensional turbulence 

(i.e., in the two-dimensional limit, any dependence on Q must vanish for 

there to be consistency with the Navier-Stokes equations). Furthermore, since 

according to ( 4 4 ) ,  vT + m as Q + a, the Baldwin-Lomax Model predicts that 

there is an increase in turbulent dissipation corresponding to an increase in 

the rotation rate of the framing which violates constraint (iv). This un- 

bounded growth of uT as Q + w  also gives rise to 'the violation of 

constraint (iii)--the Taylor-Proudman Theorem. For large SZ, vT 211 il and 

hence in the limit as SZ + , (29 )  reduces to 

_ -  

2 

- 
with the implication that aY/az is not necessarily zero (i.e., v f v(x,y) 

for any statistically steady turbulent flow sufficiently far from solid 

boundaries) in violation of the Taylor-Proudman Theorem. It is thus clear 

that vorticity models such as the Baldwin-Lomax Model are likely to yield un- 

physical results for turbulent flows involving strong rotational strains and, 

consequently, do not form a general foundation for either a Reynolds stress or 

subgrid scale stress model. 
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One-equation models involve the solution of an additional transport equa- 

tion for the turbulent kinetic energy. The eddy viscosity for such models is 

of the form 

v E K112f, 
T 

where K is the turbulent kinetic energy (obtained from its modeled transport 

equation) and f, is an appropriate length scale of turbulence which is 

usually specified empirically based upon the particular flow geometry under 

consideration (see Cebeci and Smith 1974 and Rodi 1984 for a survey of such 

models). Since the transport equation for K is frame-indifferent and 

since II is usually only specified based on the geometry of the flow con- 

figuration, such models are identically frame-indifferent. Due to the fact 

that they satisfy material frame-indifference in three-dimensional turbulent 

flows as well as in two-dimensional turbulent flows, they are unable to pre- 

dict the reduction in turbulence dissipation that results from the application 

of a strong rotation (i.e., such one-equation models are generally consistent 

with constraints (i)-(iii) but in serious violation of constraint (iv)). The 

same precise criticism can be leveled against two-equation turbulence models 

among which the K-e model has become extremely popular during the past 

decade. In the K-s model, the eddy viscosity is represented by 

v 2  
A v = c  - T I J s  (47 1 

where C = 0.09 is an empirical constant, K is the turbulent kinetic 

energy, and E: is the turbulent dissipation rate. In the K-s model, K 

and E are determined from modeled versions of their transport equations 

lJ 
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which are usually of the form (see Banjalic and Launder 1 9 7 2 )  

aK ij r -11 - E: ij ax 
i m j 

ar i a~ a7 
Dt ij ax 

j 
- -  DK - r 

- + c1 ax [F (rjm ax - 

V and C1 - C4 are empirical constants. Equations where D/Dt 3 - +  v 

( 4 8 )  - ( 4 9 )  are of the same form independent of whether or not the reference 

a -  
at 

frame is inertial. Consequently, the K-E model is frame-indifferent for - all 

flows thus making it impossible for this model to account for the reduction in 

dissipation that occurs in rotating isotropic turbulence as well as in other 

rotating turbulent flows (i.e., the model is in violation of constraint 

(iv)). Furthermore, the inability of the K-E: model t o  accurately predict 

normal Reynolds stress differences in turbulent flows of engineering 

importance (see Speziale 1 9 8 7 )  can be exacerbated further in rotating flows 

where Coriolis effects usually give rise to stronger such anisotropies. 

Problems of a similar nature exist with second-order closure models. A l l  

of the commonly used second-order closure models are of the general form (see 

Speziale 1 9 8 5 )  

in an arbitrary non-inertial frame, where 

av, ayR 
-- DcrkR - arkR + - - 

"kR ax 'mk E 'mk m m Dt -. --E- 
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is the frame-indifferent Oldroyd derivative of T and C1 is a constant 

(which arises from the rotationally dependent part of the rapid pressure- 

strain correlation). Here, CkRm is a function of the variables T, VT, 

1 

and R which arises from the modeling of the triple velocity and pressure- 

diffusion correlations whereas II 

arises from the irrotational part of the production terms and the modeling of 

the slow pressure-strain and dissipation rate correlations. This general form 

( 5 0 )  encompasses the Launder, Reece, and Rodi (1975)  model, the models of 

Lumley (1978) ,  and the Rotta-Kolmogorov model (see Mellor and Herring 1973) .  

In the former two models, the length scale of turbulence R is taken to be 

of the form 

t 

1 is a function of T, S, and 11 which 
kR 

I 

I 

I 

R = K 3 / 2 / ~  ( 5 2 )  

where the dissipation rate E is determined from a modeled transport equa- 

tion which is of the same general frame-indifferent form as (49) .  Analogous- 

ly, in the Rotta-Kolmogorov model the length scale R is obtained from the 

transport equation (see Mellor ard Herring 1973):  

(where B , ,  B y  B 3 ,  and B4 are empirical constants) which is of the same 

form in all frames of reference independent of whether or not they are iner- 

are frame- 

indifferent along with the transport equations for E and R, it follows 

tial. Consequently, since D 'I /Dt, 3CkLm/3xm, nkR, and V 2 
c kR 
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that frame-dependence in the commonly used second-order closures arises 

exclusively from the term 

- 
+ T  w ). (‘1 - 2)(TkmvRm Rm km (54) 

Since C1 is a constant that does not equal 2 (in the Launder, Reese, and 

Rodi model, C 1  = 0.6 whereas in the Rotta-Kolmogorov model, C1 = 0)  and 

T w + T  w does not generally vanish in a two-dimensional since 

turbulence, it follows that material frame-indifference in the limit of two- 

dimensional turbulence is violated. This inconsistent dependence of (50) on 

U also gives rise to a violation of the Taylor-Proudman Theorem in problems 

of engineering and geophysical interest since the constraint 

- - 
km Rm Rm km 

(which is a necessary condition for the Taylor-Proudman Theorem) is violated 

in statistically steady turbulent flows by these second-order closures. 

Furthermore, since the transport equations for e and R are frame- 

indifferent in the commonly used second-order closures, they are unable to 

account for the reduction in dissipation (and the associated change in length 

scales) in rotating isotropic turbulence. Thus, for turbulent flows in a 

rapidly rotating frame, the commonly used second-order closure models are in 

rather serious violation of the Navier-Stokes equations. Although Launder, 

Tselepidakis, and Youn1.s (1987) were able to get reasonable correlation with 

experiments on rotating channel flow using the Launder, Reece, and Rodi 

second-order closure, it must be noted that only mild rotations with Rossby 
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numbers Ro N 10 were considered (the reader should note that the Rossby 

number referred to in Launder, Tselepidakis, and Younis 1987 is actually the 

inverse Rossby number). Had those authors considered more rapid rotations 

(i.e., Rossby numbers Ro - < 0.1) serious inconsistences would most likely 

have arisen as discussed by Speziale (1985). 

Recently, a modified transport equation for the turbulence dissipation 

was proposed by Bardina, Ferziger, and Rogallo (1985) with the purpose of 

accounting for the reduction in dissipation that occurs when isotropic turbu- 

lence is subjected to a rigid body rotation. This model is of the form 

DE -)+C - T  e 
3 K  i j a x  

j j 
- =  
Dt 

2 
e - c (1 w )q 

*4 K 5 2 ij ij 

which differs from the more commonly used model (49) by the addition of the 

last term on the right-hand-side of (56). For isotropic turbulence in a 

rotating frame, Equation (56) takes the form 

2 e c4 K - C5Qe. de 
dt 
- =  - (57 1 

Bardina, Ferziger, and Rogallo (1985) found that (for C5 = 0.15) Equation 

(57) predicted reductions in the dissipation rate that were in fairly good 

agreement with the experiments of Wigeland and Nagib (1978) for rotating iso- 

tropic turbulence. However, several criticisms can be leveled at Equation 

(56) when applied to anisotropic and inhomogeneous turbulent flows. For 

example, the dependence on the intrinsic mean vorticity term E does ij ij - 
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- not vanish in a two-dimensional turbulence, thus, violating material frame- 

indifference in this limit. Furthermore, Equation ( 5 6 )  was obtained from ( 5 7 )  

by an extrapolation which is not unique. More specifically, there are other 

invariants besides ('E E )l'* which reduce to Q in a rotating 

isotropic turbulence (see Speziale, Mansour, and Rogallo 1987) .  These prob- 

lems will be addressed in the next section where a hierarchy of consistent 

models will be developed. 

2 ij ij 
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4. IMPROVED TURBULENCE MODELS FOR NON-INERTIAL REFERENCE FJUMES 

In this section, improved two-equation turbulence models and second-order 

closure models that are consistent with the non-inertial constraints derived 

in Section 2 will be developed. Since rotations can dramatically enhance ani- 

sotropic effects and alter the dissipative properties of the turbulence, eddy 

viscosity models are more likely to yield inaccurate predictions in rotating 

reference frames. Hence, it is best to base two-equation turbulence models on 

some suitable nonlinear generalization of the eddy viscosity models when 

applications to rotating flows are envisioned. Recently, the author developed 

a nonlinear K-R and K--E: model along these lines (see Speziale 1987) 

which appears to account for anisotropic effects much more accurately. This 

model is of the form 

in an arbitrary non-inertial frame where CD is an empirical constant which 

was found to assume an approximate value of 1.68 by correlating with turbulent 

channel flow data. Here, R is the length scale of turbulence which is 

given by 

for the K- type model. This model constitutes a substantially simplified 

version of a nonlinear eddy viscosity model recently derived by Yoshizawa 

(1984) using Kraichnan’s D I A  formalism; the simplification primarily arises 

from invoking the constraint of material frame-indifference in the limit of 

two-dimensional turbulence which Yoshizawa‘s full nonlinear model violates. 
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Since (58) represents a quadratic extension of the linear eddy viscosity 

models which are algebraic in nature, it follows that the satisfaction of 

frame-indifference in the two-dimensional limit restricts any frame-dependence 

in three-dimensional turbulence to arise exclusively from changes in the 

scalar length scale f.. Unfortunately, such a weak frame-dependence cannot 

account for the considerable additional anisotropies that are caused by a 

moderate system rotation of turbulent shear flows of scientific and engineer- 

ing interest. The constraint of material frame-indifference in the two- 

dimensional limit becomes important in rapidly rotating frames where there is 

a Taylor-Proudman reorganization of the flow--a limit which is largely outside 

of the domain of applicability of such simplified algebraic models which can- 

not account for extremely large anisotropies. Hence, we will relax this con- 

straint in favor of another approximation that follows from a simpified 

analysis of the Reynolds stress transport equation. Bardina, Ferziger, and 

Reynolds (1983) showed, for homogeneous turbulent flows, that the unmodeled 

Reynolds stress transport equation yielded the following analogy: the appli- 

cation of a mean strain 3 in a rotating frame is the same as the appli- 

cation of a mean strain S and mean rotation 2Q in an inertial frame of 

reference. This analogy (which is not a rigorous consequence of the Navier- 

Stokes equations since rotational effects arising from the higher-order 

moments were neglected) was shown by Bardina, Ferziger, and Reynolds (1983) to 

be a relatively good approximation for certain rotating turbulent shear flows 

and to be consistent with invariance under the Richardson number. The appli- 

cation of this analogy to the derivations in Speziale (1987) yields a non- 

linear K- model of the form 

- 
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- I s  3 mn s mn 6 ij + GikZkj + 2iijkSki) 

where 

is the frame-indifferent Jaumann derivative and the length scale is given by 

R = 2C K 3 / 2 / ~ .  
IJ 

For a homogeneous turbulence with constant mean velocity 

gradients in an inertial frame or for turbulent channel flow (the two cases 

considered when the nonlinear K-E model was first calibrated), both (58)  

and (60 )  reduce to the same form 

- -  - -  - 3 I s  mn s mn 6 ij + WikSkj + wjk S I  ki 

and hence the value of It will now be shown 

that this new nonlinear K-& model yields dramatically improved predictions 

for homogeneous turbulent shear flow in a rotating framework (see Figure 4 ) .  

Here, the constant C was taken to be 0.055 (the value recommended by 

Rodi 1984 for homogeneous turbulence where the ratio of the production to dis- 

sipation is equal to two) and the traditional transport Equation (49 )  for 

CD = 1.68  will not be altered.* 

IJ 

E 

*It 
nonlinear two-equation models of Pope (1975) and Saffman (1977) .  

is interesting to note that Equation ( 6 2 )  bears a resemblance to the 
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was used with C3 = 1.45 and C4 = 1.90. A closed form equilibrium solution 

can be obtained which is of the form 

2 2  
SK/E = 4- - 2 C C 2 S K  = - _  

3 D p  € 2 ’  P 
b12 = - 4 C  a , b33 lJ 

where the ratio of production to dissipation and 

A comparison of the results the anisotropy tensor b = -(Tij + Ksij)/K. 

obtained from the linear and nonlinear K--E models (along with the experi- 

ments of Tavoularis and Corrsin (1981) and the large-eddy simulations of 

Bardina, Ferziger, and Reynolds (1983))are shown in Table 1. Here, the equi- 

librium values of the anisotropy tensor obtained from the nonlinear K-E 

model are dramatically improved with respect to its normal components (the 

reader should note that b33 is not shown since it is precisely equal to 

-(bll + b22) due to the fact that bij is traceless). Unfortunately, no 

experimental data is available for rotating shear flow and the values of the 

anisotropies obtained from the large-eddy simulations are somewhat inaccurate 

due to course resolution and the lack of a good defiltering scheme. However, 

there is no question that the normal components of the anisotropy tensor pre- 

dicted by the nonlinear K-E model constitute a considerable improvement 

over their linear counterparts. Both the linear and nonlinear K--E models 

yield the same predictions for the equilibrium values of b12 and SK/E 

which are the same for all values of n/S. This is not consistent with 

physical and numerical experiments which indicate that b12 and SK/e can 

vary considerably with n / S .  In order to predict this dependence, a modi- 

a = (C4 - 1)/(C3 - 1) 
2 

ij 
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fied dissipation rate equation must be developed which properly accounts for 

rotational strains--a task of considerable difficulty. 

Now, a consistent modification of the modeled dissipation rate equation 

will be developed which can account for the considerable reduction in dissi- 

pation which occurs in a rapidly rotating isotropic turbulence. A s  mentioned 

in Section 3,  the intrinsic mean vorticity invariant (Lv w )1/2 does 
2 ij ij 

not vanish in the limit of two-dimensional turbulence. However, this invari- 

ant was arrived at by Bardina, Ferziger, and Rogallo (1985)  since it reduces 

- 

to SZ in a rotating isotropic turbulence (it was Equation ( 5 7 )  that was used 

to correlate with the experiments of Wigeland and Nagib 1978) .  Alternatively, 

there are other invariants that reduce to G? for rotating isotropic turbu- 

lence but vanish in the limit of two-dimensional turbulence. The primary such 

invariant is 

which was first introduced by Speziale (1985) .  This gives rise to the alter- 

native modeled transport equation for the dissipation rate 

where fl and f2 are sufficiently smooth functions of the dimensionless 

invariant I(")K/E. For plane homogeneous turbulence, the invariant I 

reduces to 

(TW) 

('3 = 3 '33 $ 11/2 12 T 12 I 
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8 2  
3 T33 = - - K) and, hence,for small anisotropies (where 

If we approximate fl and f2 as linear functions of the form 

and y 2  are dimensionless constants) it follows that (66 )  is (where 

in close approximate agreement with the most recent Bardina modification of 

Y1 

the dissipation rate transport equation given that y1 0.01 and 

y2 0.079 

for rotating isotropic turbulence). 

(this model also reduces to the more simple model given by (57) 

Such a model has been shown by Bardina to 

work reasonably well for rotating isotropic turbulence (at moderate rotation 

rates) and for simple plane turbulent shear flows subjected to mild rotational 

strains. However, unlike the Bardina model, this new model for the dissipa- 

tion rate satisfies material frame-indifference in the limit of two- 

dimensional turbulence (as can be seen from (67) since I(TW) + 0 as 
- 

+ 0) and allows for more general nonlinear dependence on W (the 

simple linear expressions (69)-(70) break down when a wider variety of flows 
= 33 

is considered). Nonlinear generalizations of (69) and (70) should be pursued 

in future studies. 

Finally, the implications that the non-inertial constraints derived in 

Section 2 have on second-order closure models will be examined. As alluded to 
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before, the Launder, Reece, and Rodi (1975) model as well as the other common- 

ly used second-order closures violate material frame-indifference in the limit 

of two-dimensional turbulence and do not give rise to a Taylor-Proudman re- 

organization for statistically steady turbulent flows in a rapidly rotating 

framework. In fact, Speziale (1985) recently showed that for rotating turbu- 

lent channel flow (see Figure 5) these second-order closure models yield the 

spurious result of a vanishing Reynolds shear stress 

in the limit as Iz + and do not give rise to a full Taylor-Proudman 

reorganization to a two-dimensional state. These problems were not en- 

countered in the recent study of Launder, Tselepidakis, and Younis (1987) 

since they restricted their attention to flows with Rossby numbers greater 

than 10 (a Taylor-Proudman reorganization would only be expected for Rossby 

numbers less than 0.1--a value nearly two orders of magnitude smaller than 

those considered therein). Complete consistency with the non-inertial con- 

straints (i)-(iv) derived herein can be obtained from second-order closures of 

the general form 

- 
T W  1 - 

+ T i 7  - -  DcTke - -- 
Dt a[TkmwIlm Ilm km 2K (Tkm mn nA 
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where E is obtained from the new modeled transport Equation (66) and 

a ,  $ ,  y are dimensionless functions of I(TW) and the invariants of T 

(which can be taken to be constants in the first approximation). The first 

term on the right-hand-side of (72),  with the coefficient a ,  arises from 

the rotationally dependent part of the rapid pressure-strain correlation. 

This term was recently derived from a Langevin model by Haworth and Pope 

(1986) who showed that it vanishes in the limit of two-dimensional 

turbulence. The second term on the right-hand-side of (72) ,  with the 

coefficient y ,  represents the rotationally dependent part of the return 

term which, in a rapidly rotating frame, was shown by Speziale (1985) to give 

rise to a Taylor-Proudman reorganization to a two-dimensional state wherein it 

is the third-order diffusion correlation then vanishes. Here again, 

which is frame-indifferent and nkR accounts for the rotationally inde- 

pendent parts of the production, pressure-strain and dissipation rate correla- 

tions. In addition to satisfying material frame-indifference in the limit of 

two-dimensional turbulence (along with consistency with the Taylor-Proudman 

Theorem), this new second-order closure also satisfies constraint (iv). To be 

specific, the rotationally dependent terms in (72)  vanish in an isotropic 

turbulence and the modified dissipation rate equation (66) gives rise to re- 

duced dissipation in a rotating frame consistent with constraint (iv). As a 

result of the dramatically improved non-inertial properties of (72),  spurious 

physical effects such as (71)  (that are predicted by the commonly used second- 

order closures) can be avoided. Equation (72)  represents a hierarchy of 

second-order closure models whose detailed study represents an extensive 

research effort that is beyond the scope of the present paper. 

‘kRm 



5. CONCLUSION 

In this paper, several important constraints that turbulence models must 

satisfy in non-inertial frames of reference were derived as a rigorous conse- 

quence of the Navier-Stokes equations. Of particular importance was the con- 

straint that turbulence models should only depend on the frame of reference 

through the intrinsic mean vorticity tensor and that all such frame-dependent 

effects must vanish in the limit of two-dimensional turbulence. In addition, 

it was also shown that Rapid Distortion Theory for an isotropic turbulence 

suddenly subjected to a strong rotation can serve as an equally important con- 

straint requiring an initially isotropic turbulence to decay isotropically 

(with a reduced dissipation rate) in a rotating frame. All of the commonly 

used turbulence models were shown to be in serious violation of these con- 

straints and, thus, inconsistent with the Navier-Stokes equations. An im- 

proved two-equation turbulence model was developed which was demonstrated to 

be substantially superior to the more standardly used K--E model in the 

description of homogeneous turbulent shear flow in a rotating frame. Further- 

more, a hierarchy of consistent second-order closure models was developed 

which have dramatically improved properties in rotating frames over the more 

commonly used second-order closures. A complete calibration and testing of 

such models is a massive research effort that is beyond the scope of the 

present study. However, such work is currently underway in collaboration with 

others. 

Finally, it should be mentioned that the results of this study could have 

important implications in the analysis of curved turbulent flows. As demon- 

strated herein, once the inertial form of a turbulence model is specified, its 

non-inertial form is automatically determined by appropriately replacing the 
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mean vorticity with the intrinsic mean vorticity. Consequently, if a turbu- 

lence model exhibits incorrect behavior in a non-inertial frame, this means 

that the dependence of the inertial form of the model on the mean vorticity is 

faulty. Since the mean vorticity plays an important role in the description 

of curved turbulent flows,it is quite likely that the difficulty in describing 

such flows is a result of the use of models that exhibit physically incorrect 

non-inertial behavior. A more detailed discussion of this point will be the 

subject of a future paper. 
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Table 1. Equilibrium results for homogeneous turbulent shear flow in a ro- 
tating frame: Comparison of the predictions of the K-e model with the 

large eddy simulations of Bardina, Ferziger, and Reynolds (1983) and the ex- 
periments of Tavoularis and Corrsin (1981). 
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Figure 1. Arbitrary non-inertial frame of reference. 
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Figure 2. Energy spectrum obtained from a direct  numerical simulation of ro- 

tating isotropic turbulence: ( a )  t = 0, (b) t > 0 (K/Ko 0.1). 
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Figure 2. Energy spectrum obtained from a direct numerical simulation of ro- 

tating isotropic turbulence: (a) t = 0, (b) t > 0 (K/Ko t 0.1). 
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Figure 4. Homogeneous turbulent shear f l o w  i n  a rotat ing  frame. 
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Figure 5. Turbulent channel flow i n  a rotating frame. 
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